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Abstract
We present results quantifying the exploitability of com-

pressed remote sensing imagery. The performance of var-
ious feature extraction and classification tasks is mea-
sured on hyperspectral images coded using the JPEG-2000
Standard. Spectral decorrelation is performed using the
Karhunen-Loève Transform and the 9-7 wavelet transform
as part of the JPEG-2000 process. The quantitative per-
formance of supervised, unsupervised, and hybrid classifi-
cation tasks is reported as a function of the compressed bit
rate for each spectral decorrelation scheme. The tasks ex-
amined are shown to perform with 99% accuracy at rates
as low as 0.125 bits/pixel/band. This suggests that one need
not limit remote sensing systems to lossless compression
only, since many common classification tools perform re-
liably on images compressed to very low bit rates.

1. Introduction

The multicomponent coding features of the JPEG-2000
Standard [1, 2] make efficient lossy compression of hyper-
spectral imagery a viable alternative to lossless compres-
sion methods. The only studies to date on the exploitability
of lossily compressed and reconstructed hyperspectral im-
agery, however, are quite recent and few in number. The
papers by Brower et al. [3] and Kasner et al. [6] com-
pared different combinations of JPEG-2000 options on hy-
perspectral imagery in terms of root mean-square error or
peak signal to noise ratio. In Shen and Kasner [10], the
authors studied anomaly detection and material identifica-
tion tasks. They reported exploitation task performance on
JPEG-2000-compressed imagery in terms of the number of
targets correctly detected or identified at a fixed false alarm
rate. We expand on Shen and Kasner’s approach by consid-
ering a number of representative remote-sensing feature ex-
traction tasks performed on imagery compressed to a wide
range of bit rates.
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1.1. The JPEG-2000 Standard
The new still image compression standard, JPEG-2000,

was written with explicit requirements for supporting cod-
ing and compression of multicomponent imagery. The stan-
dard is equipped with a variety of options for transforming
and manipulating collections of image components (e.g.,
spectral bands). A high level overview of the JPEG-2000
Standard is presented in Figure 1. Component decorrela-
tion transforms are followed by spatial wavelet transforms,
rate allocation and quantization, and binary arithmetic bit-
plane encoding. The compressed bitstreams are signaled in
packets that can be ordered according to a variety of pos-
sible priorities to support various progressive transmission
objectives. For instance, the initial portion of a truncated
JPEG-2000 codestream can always be decoded to yield an
approximation of the image represented by the full code-
stream. This feature, known as an embedded codestream,
enables multiple users to access the same compressed code-
stream at a variety of different levels of fidelity, which is
useful in database applications. A detailed technical presen-
tation of the JPEG-2000 standard can be found in Taubman
and Marcellin [11].
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Figure 1. High level overview of JPEG-2000.

In the experiments below, an AVIRIS hyperspectral im-
age is compressed and reconstructed using JPEG-2000 at
bit rates varying from 0.125 bits/pixel/band (bpppb) to
4 bpppb. AVIRIS data is highly correlated along the spec-
tral axis, and we exploit this fact with 2 different component
decorrelation transforms. The fidelity of reconstructed im-
ages is quantified and reported as a function of bit rate.

For instance, one simple way of quantifying fidelity is to



report the SNR of a reconstructed image cube (“3-D SNR”),
where “truth” is given by the original, uncompressed image
cube. Typical rate-distortion performance for such mea-
surements is shown in Figure 2. The curves present 3-
D SNR as a function of rate for 3 component transform
options: no component decorrelation, wavelet transform
decorrelation, and KLT decorrelation. The other steps in
the JPEG-2000 process were identical in all 3 cases. Ob-
serve how (nonadaptive) 9-7 wavelet transform decorrela-
tion yields a gain of around 10-12 dB on this particular
image, while image-dependent KLT decorrelation produces
around 15-20 dB of gain. Results from the following ex-
periments are reported in a similar fashion, with 3-D SNR
replaced by metrics based on exploitation task performance.
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Figure 2. 3-D SNR for the “Camarillo” image.

1.2. Data Used in Experiments
The experiments were performed on Airborne Visi-

ble/InfraRed Imaging Spectrometer (AVIRIS) hyperspec-
tral images. AVIRIS is a JPL instrument that delivers cal-
ibrated images of the upwelling spectral radiance in 224
contiguous spectral bands with wavelengths from 400 to
2500 nm with a spatial resolution varying from a few meters
to 20 meters. Each spectral component has 512 x 614 pix-
els with a sample precision of 16 bpppb [12]. The “Clouds”
scene (Figure 3) is used in atmospheric correction problems.
“Moffet Field, California” (Figure 6), has a mix of roads, ur-
ban areas, and vegetation, and is suited for spatial-spectral
image content analysis. The “Camarillo, California” scene
(Figure 10) has been used for monitoring vegetation and for
developping differential absorption techniques to retrieve
columnar water vapor [8].

Training Data. Many classification tasks employ train-
ing data, often designated as “true” and “false” classes.
“True” classes may be derived from actual ground truth,
collected on the ground at the time the image was acquired,
or they may be determined by an analyst from the images.
In our experiments the “true” and “false” classes were de-
termined by analysts with the aid of a software tool called

ALADDIN [4]. An example training class is shown for road
features in the Moffet Field image in Figure 7.

2. Feature Extraction Tasks and Results
We examine the performance of 5 classification tasks and

a hyperspectral feature transform on reconstructed imagery.
There are three main types of classification for remote sens-
ing data [9, 7]: supervised, unsupervised, and hybrid. In
supervised classification, one or more training classes are
supplied to determine the classes constituting a thematic
map. The classifier maps every pixel into one of the de-
sired feature classes by means of spectral analysis. The
supervised classifications studied here are: Spectral Angle
Mapping (SAM), Binary Encoding, and Minimum Distance
classification.

The only unsupervised classification task examined is K-
means clustering. The process is unsupervised in the sense
that no prior information on feature classes is given. The
image is segmented automatically into Voronoi cells, and
the user only supplies the desired number of classes and
convergence conditions. Classification performance of su-
pervised and unsupervised tasks is reported as percentage
of correctly classified pixels, i.e., percentage of pixels in
the reconstructed image whose classification is the same as
in the original image.

A hybrid supervised-unsupervised classifier starts with
an analyst’s input but performs tasks automatically. GE-
NIE [4] is a hybrid algorithm that processes data both spa-
tially and spectrally. GENIE performance is quantified in
terms of a fitness metric presented below. In addition,
we compute a derived hyperspectral image feature known
as the “Normalized Difference Vegetation Index” (NDVI),
which is a scalar field defined at each pixel in the image.
The fidelity of NDVI computations is defined as the SNR
of the 2-D NDVI field. Except for GENIE, all experiments
were performed using procedures supplied with the ENVI
software package [5].

2.1. Spectral Angle Mapper Classification
The Spectral Angle Mapper (SAM) computes the nor-

malized inner product of training pixels with image pixels
and assigns pixels to a feature class if the angle is less than
a user-supplied threshold. SAM is insensitive to pixel mag-
nitudes and is suited for analyzing scenes with changes in
illumination, shadows, etc. Figures 4 and 5 show a thematic
map and quantitative SAM performance for the cloud clas-
sification problem.

2.2. Minimum Distance Classifier
The minimum distance algorithm classifies pixels using

a training class (in this case, the “road” class in Figure 7).
A pixel is considered in-class if the Euclidean distance from
the pixel vector to the class mean vector is less than a user-
supplied threshold. Performance on the “roads” feature
class in Moffet Field is shown in Figure 8.



2.3. Binary Encoding

Binary Encoding quantizes a pixel vector to a binary vec-
tor by comparing each sample to that vector’s mean sample
value. A sample is quantized to 1 if it lies above the vector
mean, 0 if it lies below the mean. This procedure is applied
to each data vector being classified and to the mean vector
from a training class. The Hamming distance between the
quantized data vectors and the quantized reference vector
can then be calculated very efficiently using a Boolean ex-
clusive OR operation. Classification of a pixel to a training
class is based on a user-supplied threshold for the Hamming
distance. Figure 9 displays results from Binary Encoding.

2.4. K-Means Clustering

K-Means unsupervised classification starts with evenly
distributed initial reference vectors, one per desired feature
class. Data pixels are clustered using a minimum distance
criterion. The process then iteratively recalculates class
means and reclassifies pixels with respect to the new means.
The process stops when the number of pixels in each class
changes by less than a specified threshold or when a limit
on the number of iterations is reached. A thematic map for
5-class K-means classification and quantitative results are
shown for Camarillo data in Figures 11 and 12.

2.5. GENIE Hybrid Evolutionary Classification

GENIE (GENetic Imagery Exploitation) is a hybrid
method. The evolutionary part of the program selects a
set of image processing operations that transform raw im-
age planes into new components. These intermediate fea-
ture components are then input to a conventional supervised
classification technique. The fitness,
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is the
detection rate, and
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is the false alarm rate. A fitness of

1000 indicates a “perfect” classification result, i.e., none of
the pixels have been classified incorrectly. Fitness results
for “road” classification of Moffett Field data are shown in
Figure 13.

2.6. Normalized Difference Vegetation Index

The NDVI is a ratio between the difference and the sum
of near-infrared and red bands. It is employed as a fea-
ture in classification tasks used to monitor vegetation. In
this experiment, rather than quantify the performance of an
NDVI-based classification task we report the 2-D SNR of
the NDVI field derived from reconstructed Camarillo data.
As shown in Figure 14, NDVI SNR gains anywhere from
5-12 dB when using wavelet component decorrelation (ver-
sus no component decorrelation), while KLT decorrelation
yields an additional 2-4 dB.

3. Discussion/Conclusion

All the feature extraction tools investigated render over
99.99% correctly classified points at 4 bpppb, a bit rate

that cannot be obtained using lossless compression. Decor-
relation in the component direction prior to compression
gives a superior percentage of correctly classified points
when compared to classification with no component decor-
relation. This behavior is consistent for all the classifica-
tion tasks considered. For large scale applications, coding
hyperspectral images with JPEG-2000 at 0.125 bpppb us-
ing image-dependent KLT component decorrelation allows
users to transmit less than 1% of the original data while still
maintaing 99.5% classification accuracy. With nonadaptive
wavelet transform component decorrelation, classification
accuracy at 0.125 bpppb is only slightly worse, around 98%.
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Figure 3. The “Clouds” scene.

Figure 4. SAM thematic map for the “cloud”
class.
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Figure 5. Percentage of correctly classified
“cloud” pixels with Spectral Angle Mapper.

Figure 6. The “Moffet Field” image.

Figure 7. Moffet Field training class for “road”
features.
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Figure 8. Performance of Minimum Distance
classification for the “road” class.
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Figure 9. Performance of Binary Encoding
classification for the “road” class.

Figure 10. The “Camarillo” image.

Figure 11. K-means 5-class thematic map for
“Camarillo.”
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Figure 12. K-means classification perfor-
mance on “Camarillo.”
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Figure 13. GENIE fitness for “road” class.
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Figure 14. SNR for NDVI feature computation
on “Camarillo.”


